Highly diastereo- and enantioselective 1,3-dipolar cycloadditions between functional ketonitrones and β-substituted enals are promoted by organocatalysis with the imidazolidinium catalyst of MacMillan. Study of the scope of the reaction shows… Click to show full abstract
Highly diastereo- and enantioselective 1,3-dipolar cycloadditions between functional ketonitrones and β-substituted enals are promoted by organocatalysis with the imidazolidinium catalyst of MacMillan. Study of the scope of the reaction shows that high selectivities are conserved by varying the N-protecting group or the ester function. However it is sensitive to sterical interaction with the C-substituent of the nitrone. Reaction proceeds in all cases with a high exo selectivity. In most cases, a third diastereomer, not compatible with a concerted mechanism, was observed, although in minute amount. DFT calculations evidence that the cycloaddition proceeds in a non-concerted fashion by a first oxa Michael-type addition of the nitrone to the double bond followed by a cyclization. This mechanism explains the formation of the observed minor diastereomers. In addition, the diastereo- and enantioselectivities of the reaction were shown to be intermediately thermodynamically controlled and the diastereomeric ratio is modulated by the kinetics of iminium hydrolysis.
               
Click one of the above tabs to view related content.