LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical study of the faithful replication of micro/nanostructures on curved surfaces by the electrohydrodynamic instability process

Photo from wikipedia

This paper reports the numerical study of the one‐step faithful replication of micro/nano‐scale structures on a fiber surface by using the electrohydrodynamic instability patterning (EHDIP) process. By employing a rigorous… Click to show full abstract

This paper reports the numerical study of the one‐step faithful replication of micro/nano‐scale structures on a fiber surface by using the electrohydrodynamic instability patterning (EHDIP) process. By employing a rigorous numerical analysis method, conditions are revealed under which the faithful replication of a pattern can be achieved from a curved master electrode. It is found that the radius of curvature of the fiber plays an important role in determining the final morphology of the pattern when the destabilizing electric field is dominant in both the flat and patterned template cases. In general, stronger electric fields and larger radii of curvature of the substrate are favorable for the faithful replication of the pattern. In addition, theoretical analysis shows that higher aspect ratio of micro/nanostructures can be obtained on curved surfaces by using a master with a much lower aspect ratio. The results demonstrated in this study aims to provide guidelines for the faithful fabrication of micro/nanostructures on curved surfaces by the EHDIP process.

Keywords: study; micro nanostructures; replication; faithful replication; curved surfaces

Journal Title: ELECTROPHORESIS
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.