LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chiral separation of lansoprazole and rabeprazole by capillary electrophoresis using dual cyclodextrin systems

Photo by jjames25 from unsplash

Novel capillary electrophoresis methods using CDs as chiral selectors were developed and validated for the chiral separation of lansoprazole and rabeprazole, two proton pump inhibitors. Fourteen different neutral and anionic… Click to show full abstract

Novel capillary electrophoresis methods using CDs as chiral selectors were developed and validated for the chiral separation of lansoprazole and rabeprazole, two proton pump inhibitors. Fourteen different neutral and anionic CDs were screened at pH 4 and 7 in the preliminary analysis. Sulfobutyl‐ether‐β‐CD with a degree of substitution of 6.5 and 10 at neutral pH proved to be the most suitable chiral selector for both compounds. Various dual CD systems were also compared, and the possible mechanisms of enantiomer separation were investigated. A dual selector system containing sulfobutyl‐ether‐β‐CD degree of substitution 6.5 and native γ‐CD proved to be the most adequate system for the separations. Method optimization was carried out using an experimental design approach, performing an initial fractional factorial screening design, followed by a central composite design to establish the optimal analytical conditions. The optimized methods (25 mM phosphate buffer, pH 7, 10 mM sulfobutyl‐ether‐β‐CD/20 mM γ‐CD, +20 kV voltage; 17°C temperature; 50 mbar/3 s injection, detection at 210 nm for lansoprazole; 25 mM phosphate buffer, pH 7, 15 mM sulfobutyl‐ether‐β‐CD/30 mM γ‐CD, +20 kV voltage; 18°C temperature; 50 mbar/3 s injection, detection at 210 nm for rabeprazole) provided baseline separation for lansoprazole (Rs = 2.91) and rabeprazole (Rs = 2.53) enantiomers with favorable migration order (in both cases the S‐enantiomers migrates first). The optimized methods were validated according to current guidelines and proved to be reliable, linear, precise, and accurate for the determination of 0.15% distomer as chiral impurity in dexlansoprazole and dexrabeprazole samples.

Keywords: capillary electrophoresis; separation lansoprazole; chiral separation; lansoprazole rabeprazole; separation; rabeprazole

Journal Title: ELECTROPHORESIS
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.