LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In‐situ photopolymerized polyhedral oligomeric silsesquioxane‐derived monolithic capillary columns with quinidine functionality for enantioseparation by nano‐liquid chromatography

Photo by sxy_selia from unsplash

The successful fabrication of monolithic capillary columns for enantiomer separations was achieved within vinylized fused silica capillaries via fast “one‐pot” photo‐initiated free radical polymerization reaction. A mixture consisting of polyhedral… Click to show full abstract

The successful fabrication of monolithic capillary columns for enantiomer separations was achieved within vinylized fused silica capillaries via fast “one‐pot” photo‐initiated free radical polymerization reaction. A mixture consisting of polyhedral oligomeric silsesquioxane, O‐[2‐(methacryloyloxy)ethylcarbamoyl]‐10,11‐dihydroquinidine was copolymerized in the presence of n‐butanol, ethylene glycol and photo‐initiator 2,2‐dimethoxy‐2‐phenylacetophenone. The morphology of the resultant polymeric hybrid inorganic‐organic material and its permeability as well as porosity can be controlled by adjusting the composition of the monomers and binary porogenic solvent. The chromatographic characteristics of the columns have been investigated. Separation factors of N‐acetyl‐phenylalanine (Ac‐Phe) and dichlorprop dropped with decrease of chiral functional monomer. Permeability was better when the macroporogen ethyleneglycol was present at higher concentrations during the polymerization. In general, the chiral compounds were well separated (dichlorprop: α = 1.53, Rs up to 4.14; Ac‐Phe: α = 1.36, Rs up to 2.69) by nano‐HPLC with an optimized enantioselective monolithic capillary column which can be prepared within a few minutes.

Keywords: monolithic capillary; oligomeric silsesquioxane; capillary columns; situ photopolymerized; polyhedral oligomeric

Journal Title: ELECTROPHORESIS
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.