LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fast determination of paracetamol and its hydrolytic degradation product p-aminophenol by capillary and microchip electrophoresis with contactless conductivity detection.

Photo from wikipedia

Paracetamol (PAC) is one of the most extensively used analgesics and antipyretic drugs to treat mild and moderate pain. P-aminophenol (PAP), the main hydrolytic degradation product of PAC, can be… Click to show full abstract

Paracetamol (PAC) is one of the most extensively used analgesics and antipyretic drugs to treat mild and moderate pain. P-aminophenol (PAP), the main hydrolytic degradation product of PAC, can be found in environmental water. Recently, capillary electrophoresis (CE) has been developed for the detection of a wide variety of chemical substances. The purpose of this study is to develop a simple and fast method for the detection and separation of PAC and its main hydrolysis product PAP, using CE and microchip electrophoresis (ME) with capacitively coupled contactless conductivity detection (C4 D). The determination of these compounds using ME with C4 D is being reported for the first time. The separation was run for all analytes using a background electrolyte (BGE) (20 Mm β-alanine, pH 11) containing 14% (v/v) methanol. The RSDs obtained for migration time were less than 0.05%, and RSDs obtained for peak area were less than 3%. The detection limits (S/N = 3) that were achieved ranged from 0.3 to 0.6 mg/L without sample preconcentration. The presented method showed rapid analysis time (less than 1 min), high efficiency and precision, low cost, and a significant decrease in the consumption of reagents. The microchip system has proved to be an excellent analytical technique for fast and reliable environmental applications. This article is protected by copyright. All rights reserved.

Keywords: microchip electrophoresis; electrophoresis; detection; hydrolytic degradation; degradation product

Journal Title: Electrophoresis
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.