LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Covalent immobilization of acetylcholinesterase on a novel polyacrylic acid‐based nanofiber membrane

Photo from wikipedia

In this study, polyacrylic acid‐based nanofiber (NF) membrane was prepared via electrospinning method. Acetylcholinesterase (AChE) from Electrophorus electricus was covalently immobilized onto polyacrylic acid‐based NF membrane by demonstrating efficient enzyme… Click to show full abstract

In this study, polyacrylic acid‐based nanofiber (NF) membrane was prepared via electrospinning method. Acetylcholinesterase (AChE) from Electrophorus electricus was covalently immobilized onto polyacrylic acid‐based NF membrane by demonstrating efficient enzyme immobilization, and immobilization capacity of polymer membranes was found to be 0.4 mg/g. The novel NF membrane was synthesized via thermally activated surface reconstruction, and activation with carbonyldiimidazole upon electrospinning. The morphology of the polyacrylic acid‐based membrane was investigated by scanning electron microscopy, Fourier Transform Infrared Spectroscopy, and thermogravimetric analysis. The effect of temperature and pH on enzyme activity was investigated and maxima activities for free and immobilized enzyme were observed at 30 and 35°C, and pH 7.4 and 8.0, respectively. The effect of 1 mM Mn2+, Ni2+, Cu2+, Zn2+, Mg2+, Ca2+ ions on the stability of the immobilized AChE was also investigated. According to the Michaelis–Menten plot, AChE possessed a lower affinity to acetylthiocholine iodide after immobilization, and the Michaelis–Menten constant of immobilized and free AChE were found to be 0.5008 and 0.4733 mM, respectively. The immobilized AChE demonstrated satisfactory reusability, and even after 10 consecutive activity assay runs, AChE maintained ca. 87% of its initial activity. Free enzyme lost its activity completely within 60 days, while the immobilized enzyme retained approximately 70% of the initial activity under the same storage time. The favorable reusability of immobilized AChE enables the support to be employable to develop the AChE‐based biosensors.

Keywords: ache; acid based; immobilization; polyacrylic acid; activity; based nanofiber

Journal Title: Engineering in Life Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.