LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pseudomonas taiwanensis biofilms for continuous conversion of cyclohexanone in drip flow and rotating bed reactors

Photo by dannyg from unsplash

In this study, the biocatalytic performance of a Baeyer‐Villiger monooxygenase (BVMO) catalyzing the reaction of cyclohexanone to ε‐caprolactone was investigated in Pseudomonas biofilms. Biofilm growth and development of two Pseudomonas… Click to show full abstract

In this study, the biocatalytic performance of a Baeyer‐Villiger monooxygenase (BVMO) catalyzing the reaction of cyclohexanone to ε‐caprolactone was investigated in Pseudomonas biofilms. Biofilm growth and development of two Pseudomonas taiwanensis VLB120 variants, Ps_BVMO and Ps_BVMO_DGC, were evaluated in drip flow reactors (DFRs) and rotating bed reactors (RBRs). Engineering a hyperactive diguanylate cyclase (DGC) from Caulobacter crescentus into Ps_BVMO resulted in faster biofilm growth compared to the control Ps_BVMO strain in the DFRs. The maximum product formation rates of 92 and 87 g m–2 d–1 were observed for mature Ps_BVMO and Ps_ BVMO_DGC biofilms, respectively. The application of the engineered variants in the RBR was challenged by low biofilm surface coverage (50–60%) of rotating bed cassettes, side‐products formation, oxygen limitation, and a severe drop in production rates with time. By implementing an active oxygen supply mode and a twin capillary spray feed, the biofilm surface coverage was maximized to 70–80%. BVMO activity was severely inhibited by cyclohexanol formation, resulting in a decrease in product formation rates. By controlling the cyclohexanone feed concentration at 4 mM, a stable product formation rate of 14 g m–2 d–1 and a substrate conversion of 60% was achieved in the RBR.

Keywords: cyclohexanone; rotating bed; formation; pseudomonas taiwanensis; drip flow; bvmo

Journal Title: Engineering in Life Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.