LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Site‐directed mutagenesis improves the practical application of L‐glutamic acid decarboxylase in Escherichia coli

Photo from wikipedia

γ‐Aminobutyric acid (GABA) is a kind of non‐proteinogenic amino acid which is highly soluble in water and widely used in the food and pharmaceutical industries. Enzymatic conversion is an efficient… Click to show full abstract

γ‐Aminobutyric acid (GABA) is a kind of non‐proteinogenic amino acid which is highly soluble in water and widely used in the food and pharmaceutical industries. Enzymatic conversion is an efficient method to produce GABA, whereby glutamic acid decarboxylase (GAD) is the key enzyme that catalyzes the process. The activity of wild‐type GAD is usually limited by temperature, pH or biotin concentration, and hence directional modification is applied to improve its catalytic properties and practical application. GABA was produced using whole cell transformation of the recombinant strains Escherichia coli BL21(DE3)‐Gad B, E. coli BL21(DE3)‐Gad B‐T62S and E. coli BL21(DE3)‐Gad B‐Q309A. The corresponding GABA concentrations in the fermentation broth were 219.09, 238.42, and 276.66 g/L, and the transformation rates were 78.02%, 85.04%, and 98.58%, respectively. The results showed that Gad B‐T62S and Gad B‐Q309A are two effective mutation sites. These findings may contribute to ideas for constructing potent recombinant strains for GABA production.

Keywords: practical application; gad; escherichia coli; acid decarboxylase; glutamic acid; acid

Journal Title: Engineering in Life Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.