LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The in vitro genotoxicity potency of mixtures of pyrrolizidine alkaloids can be explained by dose addition of the individual mixture components

Photo from wikipedia

Plant‐based 1,2‐unsaturated Pyrrolizidine Alkaloids (PAs) are responsible for liver genotoxicity/carcinogenicity following metabolic activation, making them a relevant concern for safety assessment. Due to 21st century toxicology approaches, risk of PAs… Click to show full abstract

Plant‐based 1,2‐unsaturated Pyrrolizidine Alkaloids (PAs) are responsible for liver genotoxicity/carcinogenicity following metabolic activation, making them a relevant concern for safety assessment. Due to 21st century toxicology approaches, risk of PAs can be better discerned though an understanding of differing toxic potencies, but it is often mixtures of PAs that are found as contaminants in foods, for example, herbal teas and honey, food supplements and herbal medicines. Our study investigated whether genotoxicity potency of PAs dosed individually or in mixtures differed when measured using micronuclei formation in vitro in HepaRG human liver cells, which we and others have shown to be suitable for observing genotoxic potency differences across different PA structural classes. When equipotent concentrations of up to six different PAs representing a wide range of potencies in vitro were tested as mixtures, the observed genotoxic potency aligned favorably with results for single PAs. Similarly, when the BMD confidence intervals of these equipotent mixtures were compared with the confidence intervals of the individual PAs, only minimal variation was observed. These data support a conclusion that for this class of plant impurities, all acting via the same DNA‐reactive mode of action, genotoxic potency can be regarded as additive when assessing the risk of mixtures of PAs.

Keywords: potency; vitro genotoxicity; genotoxic potency; genotoxicity potency; genotoxicity; pyrrolizidine alkaloids

Journal Title: Environmental and Molecular Mutagenesis
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.