Summary The lead–acid battery (LAB) has been one of the main secondary electrochemical power sources with wide application in various fields (transport vehicles, telecommunications, information technologies, etc.). It has won… Click to show full abstract
Summary The lead–acid battery (LAB) has been one of the main secondary electrochemical power sources with wide application in various fields (transport vehicles, telecommunications, information technologies, etc.). It has won a dominating position in energy storage and load-leveling applications. However, the failure of LAB becomes the key barrier for its further development and application. Therefore, understanding the failure modes and mechanism of LAB is of great significance. The failure modes of LAB mainly include two aspects: failure of the positive electrode and negative electrode. The degradations of active material and grid corrosion are the two major failure modes for positive electrode, while the irreversible sulfation is the most common failure mode for the negative electrode. Introduction of carbon materials to the negative electrodes of LAB could suppress sulfation problem and enhance the battery performance efficiently. This paper will attempt here to pull together observations made by previous research to obtain a more comprehensive and integrative view of LAB failure modes. Moreover, according to a detail investigation to the battery market, we have drawn an objective and optimistic conclusion of LAB prospect. Copyright © 2016 John Wiley & Sons, Ltd.
               
Click one of the above tabs to view related content.