LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental investigation on thermal performance of silica cooling plate‐aluminate thermal plate‐coupled forced convection‐based pouch battery thermal management system

Photo from wikipedia

The power battery as an indispensable part of electric vehicle has attracted much attention in recent years. Among these, the lithium‐ion battery is the most important option due to the… Click to show full abstract

The power battery as an indispensable part of electric vehicle has attracted much attention in recent years. Among these, the lithium‐ion battery is the most important option due to the high energy density, good stability, and low discharge rate. However, the thermal safety problem of lithium‐ion battery cannot be ignored. Therefore, it is very necessary to explore an effective thermal management system for battery module. Here, a thermal silica cooling plate‐aluminate thermal plate (SCP‐ATP) coupling with forced convection air cooling system as a thermal management system is proposed for improving the cooling performance of pouch battery module. The results reveal that the heat dissipating performance and temperature uniformity of pouch battery module with SCP‐ATP are greatly improved compared with other thermal management systems. Moreover, the highest temperature can be controlled below 50°C, and the temperature differences can be maintained with 3°C when the SCP‐ATP coupling forced convection is utilized to enhance the heat transfer coefficient. Furthermore, considering the cooling effectiveness and consumption cost comprehensively, the optimal air velocity of the SCP‐ATP coupling forced convection cooling system is 9 m/s. In addition, the SCP‐ATP filling with different proportions of acetone has also been investigated for pouch battery module, indicating that 50% acetone exhibited a better heat transfer effect than the 30% one. Therefore, this research would provide a significant value in the design and optimization of thermal management systems for battery module.

Keywords: system; thermal management; forced convection; plate; battery

Journal Title: International Journal of Energy Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.