LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of bio‐syngas CO2 concentration on water‐gas shift and side reactions with Fe‐Cr based catalyst

Photo from wikipedia

To increase the hydrogen (H2) concentration in bio‐syngas containing carbon dioxide(CO2), water‐gas shift reaction (WGSR) is widely used. In this study, the effects of CO2 concentration on the WGSR and… Click to show full abstract

To increase the hydrogen (H2) concentration in bio‐syngas containing carbon dioxide(CO2), water‐gas shift reaction (WGSR) is widely used. In this study, the effects of CO2 concentration on the WGSR and unwanted side reactions were investigated by varying the operating parameters, such as the steam/carbon monoxide (CO) ratio, reaction temperature, and the gas‐hourly space velocity (GHSV). Based on the obtained results, CO conversion and H2 yield decreased with increasing CO2 concentration, especially when the steam/CO ratio was lower than 3. This implies that to minimize the negative effect of CO2 on WGSR, the steam/CO ratio should be 3 or higher. For any CO2 concentration, the highest CO conversion and H2 yield were obtained at a reaction temperature of 400°C. Therefore, the temperature should be precisely controlled at 400°C. As GHSV decreased, the CO conversion approached equilibrium with any CO2 concentration; however, the H2 yield remained unchanged.

Keywords: water gas; co2 concentration; co2; bio syngas; concentration

Journal Title: International Journal of Energy Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.