In this study, we applied time domain reflectometry (TDR) to determine the deposition height and porosity of sediment at a fine spatiotemporal resolution, and developed a continuous bedload monitoring method… Click to show full abstract
In this study, we applied time domain reflectometry (TDR) to determine the deposition height and porosity of sediment at a fine spatiotemporal resolution, and developed a continuous bedload monitoring method that can be applied to pools in steep mountain rivers. The TDR monitoring system consisted of sensor probes, a cable tester, multiplexers and coaxial cables. When the embedded probes penetrated both water and sediment, the boundaries of the sediment and water were consistent with the transition points in the observed waveforms of each TDR measurement. A semi-automatic analysis of the recorded TDR waveforms, which did not require calibration or parameter fitting, was conducted to establish continuous monitoring. In addition, a flume experiment was performed to test the monitoring system in a model retention basin connected to a flume, with sand of uniform grain size (1.4mm diameter) supplied for 30min. The sediment volume in the container representing the model basin was monitored using a load cell underlying the container and eight sensor probes, with a length of almost 0.27m. The sediment thickness determined by the TDR indicated a gradual deposition, and was consistent with manual measurements. Despite a marginal overestimation of 13% for a sand feed of 30 kg, the sediment volume in the model retention basin and the bedload transport rate were successfully estimated. A combination of our monitoring system and other indirect methods, such as geophones, can potentially serve as useful tools for better understanding bedload transport processes in steep mountain streams. Copyright © 2018 John Wiley & Sons, Ltd.
               
Click one of the above tabs to view related content.