LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rigorous 3-dimensional spectral data activity relationship approach modeling strategy for ToxCast estrogen receptor data classification, validation, and feature extraction.

Photo from wikipedia

The estrogenic potential (expressed as a score composite of 18 high throughput screening bioassays) of 1528 compounds from the ToxCast database was modeled by a 3-dimensional spectral data activity relationship… Click to show full abstract

The estrogenic potential (expressed as a score composite of 18 high throughput screening bioassays) of 1528 compounds from the ToxCast database was modeled by a 3-dimensional spectral data activity relationship approach (3D-SDAR). Due to a lack of 17 O nuclear magnetic resonance (NMR) simulation software, the most informative carbon-carbon 3D-SDAR fingerprints were augmented with indicator variables representing oxygen atoms from carbonyl and carboxamide, ester, sulfonyl, nitro, aliphatic hydroxyl, and phenolic hydroxyl groups. To evaluate the true predictive performance of the authors' model the United States Environmental Protection Agency provided them with a blind test set consisting of 2008 compounds. Of these, 543 had available literature data-their binding affinity served to estimate the external classification accuracy of the developed model: predictive accuracy of 0.62, sensitivity of 0.71, and specificity of 0.53 were obtained. Compared with alternative modeling techniques, the authors' model displayed very little reduction in performance between the modeling and the prediction set. A 3D-SDAR mapping technique allowed identification of structural features essential for estrogenicity: 1) the presence of a phenolic OH group or cyclohexenone, 2) a second aromatic or phenolic ring at a distance of 6 Å to 8 Å from the oxygen of the first phenol ring, 3) the presence of a methyl group approximately 6 Å away from the centroid of a phenol ring, and 4) a carbonyl group in close proximity (∼4 Å measured to the centroid) to 1 of the phenol rings. Environ Toxicol Chem 2017;36:823-830. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

Keywords: spectral data; activity relationship; data activity; dimensional spectral; relationship approach

Journal Title: Environmental toxicology and chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.