LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancement of fire retardancy properties of glass fibre–reinforced polyesters composites

Photo by fiercelupus from unsplash

This paper presents the results of an experimental investigation on the fire retardancy properties of glass fibre–reinforced polyester (GFRP) composites with bisphenol‐A vinylester and isophthalic polyester as matrices and low… Click to show full abstract

This paper presents the results of an experimental investigation on the fire retardancy properties of glass fibre–reinforced polyester (GFRP) composites with bisphenol‐A vinylester and isophthalic polyester as matrices and low electrical conductivity E‐glass fibres as reinforcement. The fire protection systems tested were alumina trihydrate (ATH), decabromodiphenyl ether (DBDE), and antimony trioxide (Sb2O3). A mass loss cone calorimeter was used to obtain the properties of heat release rate (HRR), peak HRR, total heat released, total mass loss, time to ignition, and time of combustion. Moreover, limiting oxygen index (LOI), UL‐94, and glow‐wire tests were also performed. The fire tests were carried out in order to investigate if the combination of ATH and DBDE could have “additive,” “antagonistic,” or “synergistic” effects on the flame retardant properties of the GFRP studied in this work. In addition, the influence of the ATH content variation on flame retardant properties was also evaluated. The results indicate that the sole addition of ATH at 47.7 phr could lead to the complete inhibition of the composites ignition, while the materials containing DBDE exhibit ignition and flame propagation in the cone calorimeter test.

Keywords: fibre reinforced; properties glass; retardancy properties; glass fibre; fire retardancy; fire

Journal Title: Fire and Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.