The multilayer La0.6Sr0.4CoO3/Ce0.9Gd0.1O2/La0.6Sr0.4CoO3 (LSC/CGO/LSC) thin film cathode of the solid oxide fuel cell (SOFC) with the different thickness of the LSC and CGO layers are obtained by magnetron sputtering. Cathodes… Click to show full abstract
The multilayer La0.6Sr0.4CoO3/Ce0.9Gd0.1O2/La0.6Sr0.4CoO3 (LSC/CGO/LSC) thin film cathode of the solid oxide fuel cell (SOFC) with the different thickness of the LSC and CGO layers are obtained by magnetron sputtering. Cathodes are deposited onto the NiO/8YSZ anode‐supported 8YSZ/CGO bilayer electrolyte. The influence of the deposited multilayer cathode on the SOFC performance is investigated in the temperature range between 800 and 600°C. It is shown that the thin‐film multilayer cathode allows increasing the SOFC efficiency, and the obtained optimum thickness of the LSC and CGO layers provides the maximum power density for SOFCs. The maximum power density of 2430, 1170, and 290 mW cm–2 is obtained respectively at 800, 700, and 600°C for the SOFCs with the LSC/CGO/LSC layer 50/50/50 nm thick. The polarization resistance measured at 800 and 750°C on the symmetric SOFC with the CGO electrolyte and LSC/CGO/LSC cathode is 0.17 and 0.3 Ω cm2, respectively.
               
Click one of the above tabs to view related content.