This work investigates the transfer of motor learning from the eye to the hand and its neural correlates by using functional magnetic resonance imaging (fMRI) and a sensorimotor task consisting… Click to show full abstract
This work investigates the transfer of motor learning from the eye to the hand and its neural correlates by using functional magnetic resonance imaging (fMRI) and a sensorimotor task consisting of the continuous tracking of a virtual target. In pretraining evaluation, all the participants (experimental and control group) performed the tracking task inside an MRI scanner using their right hand and a joystick. After which, the experimental group practiced an eye‐controlled version of the task for 5 days using an eye tracking system outside the MRI environment. Post‐training evaluation was done 1 week after the first scanning session, where all the participants were scanned again while repeating the manual pretraining task. Behavioral results show that the training in the eye‐controlled task produced a better performance not only in the eye‐controlled modality (motor learning) but also in the hand‐controlled modality (motor transfer). Neural results indicate that eye to hand motor transfer is supported by the motor cortex, the basal ganglia and the cerebellum, which is consistent with previous research focused on other effectors. These results may be of interest in neurorehabilitation to activate the motor systems and help in the recovery of motor functions in stroke or movement disorder patients.
               
Click one of the above tabs to view related content.