LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Direct cortical thickness estimation using deep learning‐based anatomy segmentation and cortex parcellation

Photo by hajjidirir from unsplash

Accurate and reliable measures of cortical thickness from magnetic resonance imaging are an important biomarker to study neurodegenerative and neurological disorders. Diffeomorphic registration‐based cortical thickness (DiReCT) is a known technique… Click to show full abstract

Accurate and reliable measures of cortical thickness from magnetic resonance imaging are an important biomarker to study neurodegenerative and neurological disorders. Diffeomorphic registration‐based cortical thickness (DiReCT) is a known technique to derive such measures from non‐surface‐based volumetric tissue maps. ANTs provides an open‐source method for estimating cortical thickness, derived by applying DiReCT to an atlas‐based segmentation. In this paper, we propose DL+DiReCT, a method using high‐quality deep learning‐based neuroanatomy segmentations followed by DiReCT, yielding accurate and reliable cortical thickness measures in a short time. We evaluate the methods on two independent datasets and compare the results against surface‐based measures from FreeSurfer. Good correlation of DL+DiReCT with FreeSurfer was observed (r = .887) for global mean cortical thickness compared to ANTs versus FreeSurfer (r = .608). Experiments suggest that both DiReCT‐based methods had higher sensitivity to changes in cortical thickness than Freesurfer. However, while ANTs showed low scan‐rescan robustness, DL+DiReCT showed similar robustness to Freesurfer. Effect‐sizes for group‐wise differences of healthy controls compared to individuals with dementia were highest with the deep learning‐based segmentation. DL+DiReCT is a promising combination of a deep learning‐based method with a traditional registration technique to detect subtle changes in cortical thickness.

Keywords: segmentation; anatomy; deep learning; learning based; cortical thickness; thickness

Journal Title: Human Brain Mapping
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.