LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In vivo measurements of lamination patterns in the human cortex

Photo from wikipedia

The laminar composition of the cerebral cortex is tightly connected to the development and connectivity of the brain, as well as to function and pathology. Although most of the research… Click to show full abstract

The laminar composition of the cerebral cortex is tightly connected to the development and connectivity of the brain, as well as to function and pathology. Although most of the research on the cortical layers is done with the aid of ex vivo histology, there have been recent attempts to use magnetic resonance imaging (MRI) with potential in vivo applications. However, the high‐resolution MRI technology and protocols required for such studies are neither common nor practical. In this article, we present a clinically feasible method for assessing the laminar properties of the human cortex using standard pulse sequence available on any common MRI scanner. Using a series of low‐resolution inversion recovery (IR) MRI scans allows us to calculate multiple T1 relaxation time constants for each voxel. Based on the whole‐brain T1‐distribution, we identify six different gray matter T1 populations and their variation across the cortex. Based on this, we show age‐related differences in these population and demonstrate that this method is able to capture the difference in laminar composition across varying brain areas. We also provide comparison to ex vivo high‐resolution MRI scans. We show that this method is feasible for the estimation of layer variability across large population cohorts, which can lead to research into the links between the cortical layers and function, behavior and pathologies that was heretofore unexplorable.

Keywords: vivo; lamination patterns; brain; vivo measurements; measurements lamination; human cortex

Journal Title: Human Brain Mapping
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.