LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Diffusion tensor imaging reveals microstructural alterations in corpus callosum and associated transcallosal fiber tracts in adult macaques with neonatal hippocampal lesions

Photo by terri_bleeker from unsplash

To investigate the effects of neonatal hippocampal lesions on the microstructural integrity of the corpus callosum (CC) in adulthood, macaque monkeys (n = 5) with neonatal bilateral neurotoxic hippocampal lesion (Neo‐Hibo) and… Click to show full abstract

To investigate the effects of neonatal hippocampal lesions on the microstructural integrity of the corpus callosum (CC) in adulthood, macaque monkeys (n = 5) with neonatal bilateral neurotoxic hippocampal lesion (Neo‐Hibo) and sham‐operated controls (Neo‐C, n = 5) were scanned using magnetic resonance diffusion tensor imaging (DTI) technique at 8–10 years old. CC was segmented into seven regionsgrouped into anterior CC (rostrum, genu, rostral body and anterior midbody) and posterior CC (posterior midbody, isthmus and splenium) for data analysis. Associated transcallosal fiber tracts were delineated using probabilistic tractography and evaluated with tract‐based spatial statistics (TBSS). Neo‐Hibo lesions resulted in significant increased diffusivity indices (mean, axial and radial diffusivity) in CC posterior segments. Also, significant decreased fractional anisotropy (FA) and increased diffusivity indices were seen in the associated transcallosal fiber tracts proximal to motor, posterior parietal and retrosplenial cortices. In Neo‐Hibo animals, increased mean diffusivity (MD) in posterior midbody negatively correlated with reduction of CC surface areaand the magnitude of their memory impairments was significantly correlated with FA in transcallosal fiber tracts across splenium. Although no microstructural changes were observed in CC anterior segments, changes in FA values and diffusivity indices were observed in the white matter fibers of the ventromedial prefrontal cortex. Thus, Neo‐H lesions resulted in enduring degradation in transcallosal fibers proximal to parietal and retrosplenial cortices, and hemispheric connections through posterior CC. The findings may provide complementary information for understanding the neural substrate of behavioral and cognitive deficits observed in patients with early insult to the hippocampus.

Keywords: diffusivity; fiber tracts; transcallosal fiber; neonatal hippocampal; associated transcallosal

Journal Title: Hippocampus
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.