LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonnavigational spatial memory performance is unaffected by hippocampal damage in monkeys

Photo by kellysikkema from unsplash

Evidence that the hippocampus is critical for spatial memory in nonnavigational tests is mixed. A recent study reported that temporary hippocampal inactivation impaired spatial memory in the nonnavigational Hamilton Search… Click to show full abstract

Evidence that the hippocampus is critical for spatial memory in nonnavigational tests is mixed. A recent study reported that temporary hippocampal inactivation impaired spatial memory in the nonnavigational Hamilton Search Task in monkeys. However, several studies have documented no impairment on other nonnavigational spatial memory tests following permanent hippocampal lesions. It was hypothesized that transient, but not permanent, hippocampal disruption produces deficits because monkeys undergoing transient inactivation continue to try to use a hippocampal‐dependent strategy, whereas monkeys with permanent lesions use a nonhippocampal‐dependent strategy. We evaluated this hypothesis by testing five rhesus monkeys with hippocampal lesions and five controls on a computerized analogue of the Hamilton Search Task. On each trial, monkeys saw an array of squares on a touchscreen, each of which “hid” one reward. Retrieving a reward depleted that location and monkeys continued selecting squares until they found all rewards. The optimal strategy is to remember chosen locations and choose each square once. Unlike the inactivation study, monkeys with hippocampal damage were as accurate as controls regardless of retention interval. Critically, we found no evidence that the groups used different strategies, as measured by learning rates, spatial search biases, perseverative win‐stay errors, or inter‐choice distance. This discrepancy between the effect of inactivations and lesions may result from off‐target effects of inactivations or as‐yet‐unidentified differences between the physical and computerized tasks. Combined with previous evidence that hippocampal damage impairs navigational memory in monkeys, this evidence constrains the role of the hippocampus in spatial memory as being critical for navigational tests that likely involve allocentric spatial memory but not nonnavigational tests that likely involve egocentric spatial memory.

Keywords: spatial memory; nonnavigational spatial; evidence; hippocampal damage; memory

Journal Title: Hippocampus
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.