LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An integrated deep learning‐based model of spatial cells that combines self‐motion with sensory information

Photo from wikipedia

A special class of neurons in the hippocampal formation broadly known as the spatial cells, whose subcategories include place cells, grid cells, and head direction cells, are considered to be… Click to show full abstract

A special class of neurons in the hippocampal formation broadly known as the spatial cells, whose subcategories include place cells, grid cells, and head direction cells, are considered to be the building blocks of the brain's map of the spatial world. We present a general, deep learning‐based modeling framework that describes the emergence of the spatial‐cell responses and can also explain responses that involve a combination of path integration and vision. The first layer of the model consists of head direction (HD) cells that code for the preferred direction of the agent. The second layer is the path integration (PI) layer with oscillatory neurons: displacement of the agent in a given direction modulates the frequency of these oscillators. Principal component analysis (PCA) of the PI‐cell responses showed the emergence of cells with grid‐like spatial periodicity. We show that the Bessel functions could describe the response of these cells. The output of the PI layer is used to train a stack of autoencoders. Neurons of both the layers exhibit responses resembling grid cells and place cells. The paper concludes by suggesting the wider applicability of the proposed modeling framework beyond the two simulated studies.

Keywords: deep learning; model; direction; spatial cells; learning based; integrated deep

Journal Title: Hippocampus
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.