LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Execution of new trajectories toward a stable goal without a functional hippocampus

Photo by rocinante_11 from unsplash

The hippocampus is a critical component of a mammalian spatial navigation system, with the firing sequences of hippocampal place cells during sleep or immobility constituting a “replay” of an animal's… Click to show full abstract

The hippocampus is a critical component of a mammalian spatial navigation system, with the firing sequences of hippocampal place cells during sleep or immobility constituting a “replay” of an animal's past trajectories. A novel spatial navigation task recently revealed that such “replay” sequences of place fields can also prospectively map onto imminent new paths to a goal that occupies a stable location during each session. It was hypothesized that such “prospective replay” sequences may play a causal role in goal‐directed navigation. In the present study, we query this putative causal role in finding only minimal effects of muscimol‐induced inactivation of the dorsal and intermediate hippocampus on the same spatial navigation task. The concentration of muscimol used demonstrably inhibited hippocampal cell firing in vivo and caused a severe deficit in a hippocampal‐dependent “episodic‐like” spatial memory task in a watermaze. These findings call into question whether “prospective replay” of an imminent and direct path is actually necessary for its execution in certain navigational tasks.

Keywords: spatial navigation; replay; hippocampus execution; navigation; goal

Journal Title: Hippocampus
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.