LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal imaging method to evaluate childhood obesity based on machine learning techniques

Photo by cokdewisnu from unsplash

The purposes of the study were (i) to determine the potential of thermal imaging to assess the difference in the thermal pattern in various body regions of studied population; (ii)… Click to show full abstract

The purposes of the study were (i) to determine the potential of thermal imaging to assess the difference in the thermal pattern in various body regions of studied population; (ii) to compare the performance of feature extraction, feature fusion, feature ranking and feature dimension reduction (PCA) in classification of obese and normal children using different Machine learning algorithms. About 600 thermograms were obtained from various regions such as abdomen, finger bed, forearm, neck, shank and gluteal region for the studied population. Fifteen statistical textual features were extracted from the six regional thermograms followed by implementing feature fusion with SIFT and SURF algorithm. The PCA method provides the best classification accuracy for SVM (98%) followed by Naïve Bayes and Random Forest (97%). Thus, the regional thermography and computer aided diagnostic tool with machine learning classifier could be used as a basic non‐invasive prognostic tool for the evaluation of obesity in children.

Keywords: machine learning; feature; thermal imaging; method; obesity

Journal Title: International Journal of Imaging Systems and Technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.