LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi‐scale decomposition‐based CT‐MR neurological image fusion using optimized bio‐inspired spiking neural model with meta‐heuristic optimization

Photo from wikipedia

Multi‐modal medical image fusion plays an important role in clinical diagnosis and works as an assistance model for clinicians. In this paper, a computed tomography‐magnetic resonance (CT‐MR) image fusion model… Click to show full abstract

Multi‐modal medical image fusion plays an important role in clinical diagnosis and works as an assistance model for clinicians. In this paper, a computed tomography‐magnetic resonance (CT‐MR) image fusion model is proposed using an optimized bio‐inspired spiking feedforward neural network in different decomposition domains. First, source images are decomposed into base (low‐frequency) and detail (high‐frequency) layer components. Low‐frequency subbands are fused using texture energy measures to capture the local energy, contrast, and small edges in the fused image. High‐frequency coefficients are fused using firing maps obtained by pixel‐activated neural model with the optimized parameters using three different optimization techniques such as differential evolution, cuckoo search, and gray wolf optimization, individually. In the optimization model, a fitness function is computed based on the edge index of resultant fused images, which helps to extract and preserve sharp edges available in the source CT and MR images. To validate the fusion performance, a detailed comparative analysis is presented among the proposed and state‐of‐the‐art methods in terms of quantitative and qualitative measures along with computational complexity. Experimental results show that the proposed method produces a significantly better visual quality of fused images meanwhile outperforms the existing methods.

Keywords: image; model; optimization; fusion; using optimized; image fusion

Journal Title: International Journal of Imaging Systems and Technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.