LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A deep learning approach for classification of COVID and pneumonia using DenseNet‐201

Photo from wikipedia

In the present paper, our model consists of deep learning approach: DenseNet201 for detection of COVID and Pneumonia using the Chest X‐ray Images. The model is a framework consisting of… Click to show full abstract

In the present paper, our model consists of deep learning approach: DenseNet201 for detection of COVID and Pneumonia using the Chest X‐ray Images. The model is a framework consisting of the modeling software which assists in Health Insurance Portability and Accountability Act Compliance which protects and secures the Protected Health Information . The need of the proposed framework in medical facilities shall give the feedback to the radiologist for detecting COVID and pneumonia though the transfer learning methods. A Graphical User Interface tool allows the technician to upload the chest X‐ray Image. The software then uploads chest X‐ray radiograph (CXR) to the developed detection model for the detection. Once the radiographs are processed, the radiologist shall receive the Classification of the disease which further aids them to verify the similar CXR Images and draw the conclusion. Our model consists of the dataset from Kaggle and if we observe the results, we get an accuracy of 99.1%, sensitivity of 98.5%, and specificity of 98.95%. The proposed Bio‐Medical Innovation is a user‐ready framework which assists the medical providers in providing the patients with the best‐suited medication regimen by looking into the previous CXR Images and confirming the results. There is a motivation to design more such applications for Medical Image Analysis in the future to serve the community and improve the patient care.

Keywords: pneumonia using; pneumonia; covid pneumonia; deep learning; learning approach

Journal Title: International Journal of Imaging Systems and Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.