LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving trend reversal estimation in forex markets under a directional changes paradigm with classification algorithms

Photo from wikipedia

The majority of forecasting methods use a physical time scale for studying price fluctuations of financial markets. Using physical time scales can make companies oblivious to significant activities in the… Click to show full abstract

The majority of forecasting methods use a physical time scale for studying price fluctuations of financial markets. Using physical time scales can make companies oblivious to significant activities in the market as the flow of time is discontinuous, which could translate to missed profitable opportunities or risk exposure. Directional changes (DC) has gained attention in the recent years by translating physical time series to event‐based series. Under this framework, trend reversals can be predicted by using the length of events. Having this knowledge allows traders to take an action before such reversals happen and thus increase their profitability. In this paper, we investigate how classification algorithms can be incorporated in the process of predicting trend reversals to create DC‐based trading strategies. The effect of the proposed trend reversal estimation is measured on 20 foreign exchange markets over a 10‐month period in a total of 1000 data sets. We compare our results across 16 algorithms, both DC and non‐DC based, such as technical analysis and buy‐and‐hold. Our findings show that the introduction of classification leads to return higher profit and statistically outperform all other trading strategies.

Keywords: classification; trend; directional changes; trend reversal; reversal estimation; classification algorithms

Journal Title: International Journal of Intelligent Systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.