LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CNN‐ and GAN‐based classification of malicious code families: A code visualization approach

Photo from wikipedia

Malicious code attacks have severely hindered the current development of the Internet technologies. Once the devices are infected with virus, the damages to companies and users are unpredictable. Although researchers… Click to show full abstract

Malicious code attacks have severely hindered the current development of the Internet technologies. Once the devices are infected with virus, the damages to companies and users are unpredictable. Although researchers have developed malware detection methods, the analysis result still cannot achieve the desired accuracy due to complicated malicious code families and fast‐growing variants. In this paper, to solve this problem, we combine Convolutional Neural Networks (CNNs) with Generative Adversarial Networks (GANs) to design an efficient and accurate malware detection method. First, we implement a code visualization method and utilize GAN to generate more samples of malicious code variants in the role of data augmentation. Then, the lightweight AlexNet originated from CNN to classify malware families. Finally, simulation experiments are conducted to evaluate that our CNN plus GAN model can achieve a higher classification accuracy (i.e., 97.78%) compared with some related work.

Keywords: code families; classification; code visualization; code; malicious code

Journal Title: International Journal of Intelligent Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.