Results from microarray analyzes have shown that both vitamin E deficiency and supplementation have a significant impact on the gene expression of various tissues and cells. Genes that were modulated… Click to show full abstract
Results from microarray analyzes have shown that both vitamin E deficiency and supplementation have a significant impact on the gene expression of various tissues and cells. Genes that were modulated by vitamin E supplementation were different depending on the tissue, which suggested that changes in gene expression are reflective of tissue function and the tissue‐specific regulation of vitamin E. In addition, the magnitude of gene expression and types of genes whose expression was altered were differentially affected by the vitamin E forms used for intervention. Metabolite analyzes have provided better understanding of the vitamin E metabolic pathway and have established evidence for the regulation of energy, lipid, and glucose metabolism by vitamin E. However, there are a limited number of studies that have applied advanced genomics, proteomics, and metabolomics technologies to investigate vitamin E's biological functions and mechanisms of action. In this review, the effects of vitamin E on gene and protein expression investigated by microarray, transcriptome, and proteomics analysis are discussed. © 2019 IUBMB Life, 71(4):442–455, 2019
               
Click one of the above tabs to view related content.