Toxicologic evaluation of new drug candidates routinely utilizes healthy animals. In oncology, there remains a limited understanding of the effects of novel test candidates in a diseased host. For vascular… Click to show full abstract
Toxicologic evaluation of new drug candidates routinely utilizes healthy animals. In oncology, there remains a limited understanding of the effects of novel test candidates in a diseased host. For vascular modulating agents (VMAs), an increased understanding of preclinical tumour–host interaction, and its potential to exacerbate or alleviate ‘off‐target’ effects of anti‐angiogenic administration, could aid in the prediction of adverse clinical outcomes in a defined cancer patient. We have previously reported that the implantation and growth of a range of human‐ and mouse‐derived tumours leads to structural vascular and, potentially, functional signalling changes within host mouse endocrine tissues, indicating possible roles for tumour‐ and host‐derived cytokines/growth factors and the liberation of myeloid‐derived suppressor cells in this phenomenon. Here, we further demonstrate that the growth of the Calu‐6 xenograft is associated with a resistance to VMA‐induced mouse peripheral endocrine vascular rarefaction (toxicity), with potential functional impact, notably with respect to mixed tyrosine kinase inhibition. The pathogenesis of these findings indicates a potential role for both tumour‐ and host‐derived basic fibroblast growth factor (bFGF), with associated upregulation in the intra‐tumoural autotaxin‐lysophosphatic acid signalling axis.
               
Click one of the above tabs to view related content.