LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fs-laser ablation of teeth is temperature limited and provides information about the ablated components.

Photo from wikipedia

The goal of this work is to investigate the thermal effects of femtosecond laser (fs-laser) ablation for the removal of carious dental tissue. Additional studies identify different tooth tissues through… Click to show full abstract

The goal of this work is to investigate the thermal effects of femtosecond laser (fs-laser) ablation for the removal of carious dental tissue. Additional studies identify different tooth tissues through femtosecond laser induced breakdown spectroscopy (fsLIBS) for the development of a feedback loop that could be utilized during ablation in a clinical setting. Scanning Election Microscope (SEM) images reveal that minimal morphological damages are incurred at repetition rates below the carbonization threshold of each tooth tissue. Thermal studies measure the temperature distribution and temperature decay during laser ablation and after laser cessation, and demonstrate that repetition rates at or below 10kHz with a laser fluence of 40 J/cm2 would inflict minimal thermal damage on the surrounding nerve tissues and provide acceptable clinical removal rates. Spectral analysis of the different tooth tissues is also conducted and differences between the visible wavelength fsLIBS spectra are evident, though more robust classification studies are needed for clinical translation. These results have initiated a set of precautionary recommendations that would enable the clinician to utilize femtosecond laser ablation for the removal of carious lesions while ensuring that the solidity and utility of the tooth remain intact.

Keywords: ablation teeth; temperature; ablation; laser ablation; femtosecond laser

Journal Title: Journal of biophotonics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.