LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlinear-optical stain-free stereoimaging of astrocytes and gliovascular interfaces.

Methods of nonlinear optics provide a vast arsenal of tools for label-free brain imaging, offering a unique combination of chemical specificity, the ability to detect fine morphological features, and an… Click to show full abstract

Methods of nonlinear optics provide a vast arsenal of tools for label-free brain imaging, offering a unique combination of chemical specificity, the ability to detect fine morphological features, and an unprecedentedly high, subdiffraction spatial resolution. While these techniques provide a rapidly growing platform for the microscopy of neurons and fine intraneural structures, optical imaging of astroglia still largely relies on filament-protein-antibody staining, subject to limitations and difficulties especially severe in live-brain studies. Once viewed as an ancillary, inert brain scaffold, astroglia are being promoted, as a part of an ongoing paradigm shift in neurosciences, into the role of a key active agent of intercellular communication and information processing, playing a significant role in brain functioning under normal and pathological conditions. Here, we show that methods of nonlinear optics provide a unique resource to address long-standing challenges in label-free astroglia imaging. We demonstrate that, with a suitable beam-focusing geometry and careful driver-pulse compression, microscopy of second-harmonic generation (SHG) can enable a high-resolution label-free imaging of fibrillar structures of astrocytes, most notably astrocyte processes and their endfeet. SHG microscopy of astrocytes is integrated in our approach with nonlinear-optical imaging of red blood cells based on third-harmonic generation (THG) enhanced by a three-photon resonance with the Soret band of hemoglobin. With astroglia and red blood cells providing two physically distinct imaging contrasts in SHG and THG channels, a parallel detection of the second and third harmonics enables a high-contrast, high-resolution, stain-free stereoimaging of gliovascular interfaces in the central nervous system. Transverse scans of the second and third harmonics are shown to resolve an ultrafine texture of blood-vessel walls and astrocyte-process endfeet on gliovascular interfaces with a spatial resolution within 1 μm at focusing depths up to 20 μm inside a brain. This article is protected by copyright. All rights reserved.

Keywords: microscopy; brain; gliovascular interfaces; nonlinear optical; free stereoimaging; stain free

Journal Title: Journal of biophotonics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.