LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wide-field monitoring and real-time local recording of microvascular networks on small animals with a dual-raster-scanned photoacoustic microscope.

Photo from wikipedia

Photoacoustic microscopy (PAM) provides a new method for the imaging of small-animals with high-contrast and deep-penetration. However, the established PAM systems have suffered from a limited field-of-view or imaging speed,… Click to show full abstract

Photoacoustic microscopy (PAM) provides a new method for the imaging of small-animals with high-contrast and deep-penetration. However, the established PAM systems have suffered from a limited field-of-view or imaging speed, which are difficult to both monitor wide-field activity of organ and record real-time change of local tissue. Here, we reported a dual-raster-scanned photoacoustic microscope (DRS-PAM) that integrates a two-dimensional motorized translation stage for large field-of-view imaging and a 2-axis fast galvanometer scanner for real-time imaging. The DRS-PAM provides a flexible transition from wide-field monitoring the vasculature of organs to real-time imaging of local dynamics. To test the performance of DRS-PAM, clear characterization of angiogenesis and functional detail was illustrated, hemodynamic activities of vasculature in cerebral cortex of a mouse were investigated. Furthermore, response of tumor to treatment were successfully monitored during treatment. The experimental results demonstrate the DRS-PAM holds the great potential for biomedical research of basic biology. This article is protected by copyright. All rights reserved.

Keywords: real time; field; pam; wide field; small animals

Journal Title: Journal of biophotonics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.