LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On chip optofluidic low-pressure monitoring device†.

Photo from wikipedia

We present an on chip optofluidic surface deformable liquid Dove prism (LDP) based low-fluid flow pressure monitoring device. The unique design of the device in combination with liquid and soft… Click to show full abstract

We present an on chip optofluidic surface deformable liquid Dove prism (LDP) based low-fluid flow pressure monitoring device. The unique design of the device in combination with liquid and soft solid enabled by the total internal reflection of light makes the sensor highly sensitive and compatible with the integration of a microfluidic and/or Lab-on -a-chip device. A layer-by-layer soft lithographic (LSL) and 3D printing technique are exploited to make the device. We have used Polydimethylsiloxane (PDMS) as the layer material and two variety of liquids (i) immersion oil (IO) and (ii) di-iodomethane (DI) as refracting medium to construct the LDP sensor. Optical ray tracing simulation is performed to optimize the sensor. The pressure sensor shows sensitivity as high as ±28.5 mV per 50 Pa pressure with an error ± 2.5 mV and repeatability of ~99.56% at full scale. We have shown the applicability of the sensor by capturing and analyzing respiratory pressure signals of some human subjects at numerous conditions. This article is protected by copyright. All rights reserved.

Keywords: monitoring device; pressure monitoring; chip optofluidic; pressure; device

Journal Title: Journal of biophotonics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.