Wide-field fluorescence microscopy (WFFM) is widely adopted in biomedical studies, due to its high imaging speed over large field-of-views. However, WFFM is susceptible to out-of-focus background. To overcome this problem,… Click to show full abstract
Wide-field fluorescence microscopy (WFFM) is widely adopted in biomedical studies, due to its high imaging speed over large field-of-views. However, WFFM is susceptible to out-of-focus background. To overcome this problem, structured illumination microscopy (SIM) was proposed as a wide-field, optical-sectioning technique, which needs multiple raw images for image reconstruction and thus has a lower imaging speed. Here we propose SIM with interleaved reconstruction, to make SIM of lossless speed. We apply this method in volumetric imaging of neural network dynamics in brains of zebrafish larva in vivo. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.