LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Classification‐based framework for binarization on mice eye image in vivo with optical coherence tomography

Photo from wikipedia

Optical coherence tomography (OCT) angiography has drawn much attention in the medical imaging field. Binarization plays an important role in quantitative analysis of eye with optical coherence tomography. To address… Click to show full abstract

Optical coherence tomography (OCT) angiography has drawn much attention in the medical imaging field. Binarization plays an important role in quantitative analysis of eye with optical coherence tomography. To address the problem of few training samples and contrast‐limited scene, we proposed a new binarization framework with specific‐patch SVM (SPSVM) for low‐intensity OCT image, which is open and classification‐based framework. This new framework contains two phases: training model and binarization threshold. In the training phase, firstly, the patches of target and background from few training samples are extracted as the ROI and the background, respectively. Then, PCA is conducted on all patches to reduce the dimension and learn the eigenvector subspace. Finally, the classification model is trained from the features of patches to get the target value of different patches. In the testing phase, the learned eigenvector subspace is conducted on the pixels of each patch. The binarization threshold of patch is obtained with the learned SVM model. We acquire a new OCT mice eye (OCT‐ME) database, which is publicly available at https://mip2019.github.io/spsvm. Extensive experiments were performed to demonstrate the effectiveness of the proposed SPSVM framework.

Keywords: coherence tomography; optical coherence; framework; binarization

Journal Title: Journal of Biophotonics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.