LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Burn characterization using object‐oriented hyperspectral image classification

Photo from wikipedia

This paper presents a new approach based on hyperspectral imaging combined with an object‐oriented classification method that allows the generation of burn depth classification maps facilitating easier characterization of burns.… Click to show full abstract

This paper presents a new approach based on hyperspectral imaging combined with an object‐oriented classification method that allows the generation of burn depth classification maps facilitating easier characterization of burns. Hyperspectral images of 14 patients diagnosed with burns on the upper and lower limbs were acquired using a pushbroom hyperspectral imaging system. The images were analyzed using an object‐oriented classification approach that uses objects with specific spectral, textural and spatial attributes as the minimum unit for classifying information. The method performance was evaluated in terms of overall accuracy, sensitivity, precision and specificity computed from the confusion matrix. The results revealed that the approach proposed in this study performed well in differentiating burn classes with a high level of overall accuracy (95.99% ± 0.60%), precision (97.30% ± 2.46%), sensitivity (97.23% ± 3.02%) and specificity (98.02% ± 1.98%). In conclusion, the object‐based approach for burns hyperspectral images classification can provide maps that can help surgeons identify with better precision different depths of burn wounds.

Keywords: classification; object oriented; using object; burn characterization; approach

Journal Title: Journal of Biophotonics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.