LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel Acoustic radiation force optical coherence elastography based on ultrasmall ultrasound transducer for biomechanics evaluation of in vivo cornea.

Photo by kaitduffey17 from unsplash

We developed a novel acoustic radiation force optical coherence elastography (ARF-OCE) based on an ultrasmall ultrasound transducer for quantitative biomechanics evaluations of in vivo cornea. A custom single-sided meta-ultrasonic transducer… Click to show full abstract

We developed a novel acoustic radiation force optical coherence elastography (ARF-OCE) based on an ultrasmall ultrasound transducer for quantitative biomechanics evaluations of in vivo cornea. A custom single-sided meta-ultrasonic transducer with an outer diameter of 1.8 mm, focal spot diameter of 1.6 mm, central frequency of 930 kHz, and focal length of 0.8 mm was applied to excite the sample. The sample arm of the ARF-OCE system employed a three-dimensional printed holder that allowed for ultrasound excitation and ARF-OCE detection. The phase-resolved algorithm was combined with a Lamb wave model to depth-resolved evaluate corneal biomechanics after keratoconus and cross-linking treatments (CXL). The results showed that, compare to the healthy cornea, the Lamb wave velocity was significantly reduced in the keratoconus, increased in the cornea after CXL, and increased with cross-linked irradiation energy in the cornea. These results indicated the good clinical translation potential of the proposed novel ARF-OCE.

Keywords: transducer; novel acoustic; cornea; radiation force; biomechanics; acoustic radiation

Journal Title: Journal of biophotonics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.