LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impaired Phosphate Tolerance Revealed With an Acute Oral Challenge

Photo by slaiden from unsplash

Elevated serum phosphate is consistently linked with cardiovascular disease (CVD) events and mortality in the setting of normal and impaired kidney function. However, serum phosphate does not often exceed the… Click to show full abstract

Elevated serum phosphate is consistently linked with cardiovascular disease (CVD) events and mortality in the setting of normal and impaired kidney function. However, serum phosphate does not often exceed the upper limit of normal until glomerular filtration rate (GFR) falls below 30 mL/min/m2. It was hypothesized that the response to an oral, bioavailable phosphate load will unmask impaired phosphate tolerance, a maladaptation not revealed by baseline serum phosphate concentrations. In this study, rats with varying kidney function as well as normo‐phosphatemic human subjects, with inulin‐measured GFR (13.2 to 128.3mL/min), received an oral phosphate load. Hormonal and urinary responses were evaluated over 2 hours. Results revealed that the more rapid elevation of serum phosphate was associated with subjects and rats with higher levels of kidney function, greater responsiveness to acute changes in parathyroid hormone (PTH), and significantly more urinary phosphate at 2 hours. In humans, increases in urinary phosphate to creatinine ratio did not correlate with baseline serum phosphate concentrations but did correlate strongly to early increase of serum phosphate. The blunted rise in serum phosphate in rats with CKD was not the result of altered absorption. This result suggests acute tissue deposition may be altered in the setting of kidney function impairment. Early recognition of impaired phosphate tolerance could translate to important interventions, such as dietary phosphate restriction or phosphate binders, being initiated at much higher levels of kidney function than is current practice. © 2017 American Society for Bone and Mineral Research.

Keywords: kidney function; phosphate tolerance; serum phosphate; impaired phosphate; phosphate

Journal Title: Journal of Bone and Mineral Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.