LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sodium Acetate, Sodium Acid Pyrophosphate, and Citric Acid Impacts on Isolated Peripheral Lymphocyte Viability, Proliferation, and DNA Damage

Photo from wikipedia

The present study examined the impacts of sodium acetate (SA), sodium acid pyrophosphate (SAPP), and citric acid (CA) on the viability, proliferation, and DNA damage of isolated lymphocytes in vitro.… Click to show full abstract

The present study examined the impacts of sodium acetate (SA), sodium acid pyrophosphate (SAPP), and citric acid (CA) on the viability, proliferation, and DNA damage of isolated lymphocytes in vitro. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays were adopted to evaluate cell viability, while comet assay was employed to assess the genotoxic effects. The cells were incubated with different levels of SA (50, 100, and 200 mM), SAPP (25, 50, and 100 mM/L), or CA (100, 200, and 300 μg/mL). The lymphocytes treated with the tested food additives showed concentration‐dependent decreases in both cell viability and proliferation. A concentration‐dependent increase in LDH release was also observed. The comet assay results indicated that SA, SAPP, and CA increased DNA damage percentage, tail DNA percentage, tail length, and tail moment in a concentration‐dependent manner. The current results showed that SA, SAPP, and CA are cytotoxic and genotoxic to isolated lymphocytes in vitro.

Keywords: dna damage; acid; viability proliferation; sodium

Journal Title: Journal of Biochemical and Molecular Toxicology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.