LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analytical gradients for subsystem density functional theory within the slater‐function‐based amsterdam density functional program

Photo by xcrap from unsplash

We present a new implementation of analytical gradients for subsystem density‐functional theory (sDFT) and frozen‐density embedding (FDE) into the Amsterdam Density Functional program (ADF). The underlying theory and necessary expressions… Click to show full abstract

We present a new implementation of analytical gradients for subsystem density‐functional theory (sDFT) and frozen‐density embedding (FDE) into the Amsterdam Density Functional program (ADF). The underlying theory and necessary expressions for the implementation are derived and discussed in detail for various FDE and sDFT setups. The parallel implementation is numerically verified and geometry optimizations with different functional combinations (LDA/TF and PW91/PW91K) are conducted and compared to reference data. Our results confirm that sDFT‐LDA/TF yields good equilibrium distances for the systems studied here (mean absolute deviation: 0.09 Å) compared to reference wave‐function theory results. However, sDFT‐PW91/PW91k quite consistently yields smaller equilibrium distances (mean absolute deviation: 0.23 Å). The flexibility of our new implementation is demonstrated for an HCN‐trimer test system, for which several different setups are applied. © 2016 Wiley Periodicals, Inc.

Keywords: density functional; theory; gradients subsystem; subsystem density; analytical gradients

Journal Title: Journal of Computational Chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.