LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An improved Poisson‐Nernst‐Planck ion channel model and numerical studies on effects of boundary conditions, membrane charges, and bulk concentrations

Photo from wikipedia

In this paper, an improved Poisson‐Nernst‐Planck ion channel (PNPic) model is presented, along with its effective finite element solver and software package for an ion channel protein in a solution… Click to show full abstract

In this paper, an improved Poisson‐Nernst‐Planck ion channel (PNPic) model is presented, along with its effective finite element solver and software package for an ion channel protein in a solution of multiple ionic species. Numerical studies are then done on the effects of boundary value conditions, membrane charges, and bulk concentrations on electrostatics and ionic concentrations for an ion channel protein, a gramicidin A (gA), and five different ionic solvents with up to four species. Numerical results indicate that the cation selectivity property of gA occurs within a central portion of ion channel pore, insensitively to any change of boundary value condition, membrane charge, or bulk concentration. Moreover, a numerical scheme for computing the electric currents induced by ion transports across membrane via an ion channel pore is presented and implemented as a part of the PNPic finite element package. It is then applied to the calculation of current–voltage curves, well validating the PNPic model and finite element package by electric current experimental data.

Keywords: improved poisson; ion channel; model; ion; poisson nernst

Journal Title: Journal of Computational Chemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.