LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lantern‐type dinickel complexes: An exploration of possibilities for nickel–nickel bonding with bridging bidentate ligands

Photo from wikipedia

Many binuclear nickel complexes have NiNi distances suggesting NiNi covalent bonds, including lantern‐type complexes with bridging bidentate ligands. This DFT study treats tetragonal, trigonal, and digonal lantern‐type complexes with the… Click to show full abstract

Many binuclear nickel complexes have NiNi distances suggesting NiNi covalent bonds, including lantern‐type complexes with bridging bidentate ligands. This DFT study treats tetragonal, trigonal, and digonal lantern‐type complexes with the formamidinate, guanidinate, and formate ligands, besides some others. Formal bond orders (ranging from zero to two) are assigned to all the NiNi bonds on the basis of MO occupancy considerations. A VB‐based electron counting approach assigns plausible resonance structures to the dinickel cores. Model tetragonal complexes with the dimethylformamidinate and the dithioformate ligands have singlet ground states whose non‐covalently bonded NiNi distances are close to those in their experimentally known counterparts. Trigonal dinickel complexes are unknown, but are predicted to have quartet ground states with NiNi bonds of order 0.5. The model digonal complexes are predicted to have triplet ground states, but the predicted NiNi bond lengths are longer than those found in their experimentally known counterparts. This could owe to inadequate treatment of electron correlation by DFT in these short NiNi bonds with their multiconfigurational character. All the NiNi bond distances here are categorized into ranges according to the NiNi bond orders of 0, 0.5, 1, 1.5, and 2, no NiNi bonds of order higher than two being identified. The NiNi bonds of given order in these lantern‐type complexes are consistently shorter than the corresponding NiNi bonds in dinickel complexes having carbonyl ligands, attributable to the metalmetal bond lengthening effect of CO ligands.

Keywords: bridging bidentate; bidentate ligands; lantern type; dinickel complexes; bond

Journal Title: Journal of Computational Chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.