LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel I–V Disposable Urea Biosensor Based on a Dip-coated Hierarchical Magnetic Nanocomposite (Fe3O4@SiO2@NH2) on SnO2:F Layer

Photo by ninjason from unsplash

Silicon oxide was initially loaded on a Fe3O4 magnetic nanoparticle substrate (Fe3O4@SiO2) and then functionalized with ─NH2 group (Fe3O4@SiO2@NH2) to construct a novel hierarchical magnetic nanocomposite. A sensitive urea biosensor… Click to show full abstract

Silicon oxide was initially loaded on a Fe3O4 magnetic nanoparticle substrate (Fe3O4@SiO2) and then functionalized with ─NH2 group (Fe3O4@SiO2@NH2) to construct a novel hierarchical magnetic nanocomposite. A sensitive urea biosensor medium involving a dip-coated hierarchical magnetic nanocomposite on F-doped SnO2 conducting glass was designed (Fe3O4@SiO2@NH2/SnO2:F) to achieve an excellent platform for urease (Urs) enzyme immobilization via covalent linking to the exposed NH2 groups through glutaraldehyde (Urs/Fe3O4@SiO2@NH2/SnO2:F). The hierarchical magnetic nanocomposite selection criteria were based on enhancement of urea biosensing by Urs immobilization via covalent linking to the exposed NH2 groups, while the SnO2:F selection as substrate was based on its ability to afford high electronic density to the biosensor surface as an electrostatic repulsion layer for the anionic interferents in the biological environment. FE-SEM, TEM, FTIR, CV, EIS, and I–V techniques established the morphology of the modified electrode's surface and electrochemical behavior of urea on the fabricated Urs/Fe3O4@SiO2@NH2/SnO2:F biosensor. The sensing mechanism can be clarified on the basis of the two reactions, namely (1) catalytic reaction and (2) oxidation or reduction of metal oxides, same as in the case of solid-state gas sensors. The I–V results display high sensitivity for urea detection of within 5–210 mg/dL and a limit of detection of 3 mg/dL.

Keywords: sio2 nh2; magnetic nanocomposite; fe3o4 sio2; nh2 sno2; hierarchical magnetic

Journal Title: Journal of The Chinese Chemical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.