LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Bcl‐2 inhibitor venetoclax inhibits Nrf2 antioxidant pathway activation induced by hypomethylating agents in AML

Photo by schluditsch from unsplash

Induction of reactive oxygen species (ROS), an important process for the cytotoxicity of various acute myeloid leukemia (AML) therapies including hypomethylating agents (HMAs), concurrently activates the NF‐E2‐related factor 2 (Nrf2)… Click to show full abstract

Induction of reactive oxygen species (ROS), an important process for the cytotoxicity of various acute myeloid leukemia (AML) therapies including hypomethylating agents (HMAs), concurrently activates the NF‐E2‐related factor 2 (Nrf2) antioxidant response pathway which in turn results in induction of antioxidant enzymes that neutralize ROS. In this study, we demonstrated that Nrf2 inhibition is an additional mechanism responsible for the marked antileukemic activity in AML seen with the combination of HMAs and venetoclax (ABT‐199). HMA and venetoclax combined treatment augmented mitochondrial ROS induction and apoptosis compared with treatment HMA alone. Treatment of AML cell lines as well as primary AML cells with venetoclax disrupted HMA decitabine‐increased nuclear translocation of Nrf2 and induction of downstream antioxidant enzymes including heme oxygenase‐1 and NADP‐quinone oxidoreductase‐1. Venetoclax treatment also leads to dissociation of B‐cell lymphoma 2 from the Nrf2/Keap‐1 complex and targets Nrf2 to ubiquitination and proteasomal degradation. Thus, our results here demonstrated an undiscovered mechanism underlying synergistic effect of decitabine and venetoclax in AML cells, elucidating for impressive results in antileukemic activity against AML in preclinical and early clinical studies by combined treatment of these drugs.

Keywords: venetoclax; nrf2 antioxidant; treatment; hypomethylating agents; aml; induction

Journal Title: Journal of Cellular Physiology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.