LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Radiosensitivity enhancement by Co‐NMS‐mediated mitochondrial impairment in glioblastoma

Photo by charlesdeluvio from unsplash

We investigated the radiosensitizing effects of Co‐NMS, a derivative of nimesulide based on a cobalt carbonyl complex, on malignant glioma cells. In the zebrafish exposed to Co‐NMS ranging from 5… Click to show full abstract

We investigated the radiosensitizing effects of Co‐NMS, a derivative of nimesulide based on a cobalt carbonyl complex, on malignant glioma cells. In the zebrafish exposed to Co‐NMS ranging from 5 to 20 μM, cell death and heat shock protein 70 expression in the brain and neurobehavioral performance were evaluated. Our data showed that Co‐NMS at 5 μM did not cause the appreciable neurotoxicity, and thereby was given as a novel radiation sensitizer in further study. In the U251 cells, Co‐NMS combined with irradiation treatment resulted in significant inhibition of cell growth and clonogenic capability as well as remarkable increases of G2/M arrest and apoptotic cell population compared to the irradiation alone treatment. This demonstrated that the Co‐NMS administration exerted a strong potential of sensitizing effect on the irradiated cells. With regard to the tumor radiosensitization of Co‐NMS, it could be primarily attributed to the Co‐NMS‐derived mitochondrial impairment, reflected by the loss of mitochondrial membrane potential, the disruption of mitochondrial fusion and fission balance as well as redox homeostasis. Furthermore, the energy metabolism of the U251 cells was obviously suppressed by cotreatment with Co‐NMS and irradiation through repressing mitochondrial function. Taken together, our findings suggested that Co‐NMS could be a desirable drug to enhance the radiotherapeutic effects in glioblastoma patients.

Keywords: radiosensitivity enhancement; mediated mitochondrial; impairment; nms mediated; mitochondrial impairment; enhancement nms

Journal Title: Journal of Cellular Physiology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.