LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Function and regulation of GPX4 in the development and progression of fibrotic disease

Photo from wikipedia

Fibrosis is a common feature of fibrotic diseases that poses a serious threat to global health due to high morbidity and mortality in developing countries. There exist some chemical compounds… Click to show full abstract

Fibrosis is a common feature of fibrotic diseases that poses a serious threat to global health due to high morbidity and mortality in developing countries. There exist some chemical compounds and biomolecules associated with the development of fibrosis, including cytokines, hormones, and enzymes. Among them, glutathione peroxidase 4 (GPX4), as a selenoprotein antioxidant enzyme, is widely found in the embryo, testis, brain, liver, heart, and photoreceptor cells. Moreover, it is shown that GPX4 elicits diverse biological functions by suppressing phospholipid hydroperoxide at the expense of decreased glutathione (GSH), including loss of neurons, autophagy, cell repair, inflammation, ferroptosis, apoptosis, and oxidative stress. Interestingly, these processes are intimately related to the occurrence of fibrotic disease. Recently, GPX4 has been reported to exhibit a decline in fibrotic disease and inhibit fibrosis, suggesting that alterations of GPX4 can change the course or dictate the outcome of fibrotic disease. In this review, we summarize the role and underlying mechanisms of GPX4 in fibrosis diseases such as lung fibrosis, liver fibrosis, kidney fibrosis, cardiac fibrosis, and myelofibrosis.

Keywords: development; gpx4; function regulation; fibrotic disease; fibrosis

Journal Title: Journal of Cellular Physiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.