LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phosphorylation states greatly regulate the activity and gating properties of Cav3.1 T‐type Ca2+ channels

Photo by stayandroam from unsplash

Cav3.1 T‐type Ca2+ channels play pivotal roles in neuronal low‐threshold spikes, visceral pain, and pacemaker activity. Phosphorylation has been reported to potently regulate the activity and gating properties of Cav3.1… Click to show full abstract

Cav3.1 T‐type Ca2+ channels play pivotal roles in neuronal low‐threshold spikes, visceral pain, and pacemaker activity. Phosphorylation has been reported to potently regulate the activity and gating properties of Cav3.1 channels. However, systematic identification of phosphorylation sites (phosphosites) in Cav3.1 channel has been poorly investigated. In this work, we analyzed rat Cav3.1 protein expressed in HEK‐293 cells by mass spectrometry, identified 30 phosphosites located at the cytoplasmic regions, and illustrated them as a Cav3.1 phosphorylation map which includes the reported mouse Cav3.1 phosphosites. Site‐directed mutagenesis of the phosphosites to Ala residues and functional analysis of the phospho‐silent Cav3.1 mutants expressed in Xenopus oocytes showed that the phospho‐silent mutation of the N‐terminal Ser18 reduced its current amplitude with accelerated current kinetics and negatively shifted channel availability. Remarkably, the phospho‐silent mutations of the C‐terminal Ser residues (Ser1924, Ser2001, Ser2163, Ser2166, or Ser2189) greatly reduced their current amplitude without altering the voltage‐dependent gating properties. In contrast, the phosphomimetic Asp mutations of Cav3.1 on the N‐ and C‐terminal Ser residues reversed the effects of the phospho‐silent mutations. Collectively, these findings demonstrate that the multiple phosphosites of Cav3.1 at the N‐ and C‐terminal regions play crucial roles in the regulation of the channel activity and voltage‐dependent gating properties.

Keywords: cav3 type; type ca2; activity; ca2 channels; phosphorylation; gating properties

Journal Title: Journal of Cellular Physiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.