LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of electrically conductive hybrid nanofibers based on CNT‐polyurethane nanocomposite for cardiac tissue engineering

Photo by moonshadowpress from unsplash

Conductive nanofibers have been considered as one of the most interesting and promising candidate scaffolds for cardiac patch applications with capability to improve cell–cell communication. Here, we successfully fabricated electroconductive… Click to show full abstract

Conductive nanofibers have been considered as one of the most interesting and promising candidate scaffolds for cardiac patch applications with capability to improve cell–cell communication. Here, we successfully fabricated electroconductive nanofibrous patches by simultaneous electrospray of multiwalled carbon nanotubes (MWCNTs) on polyurethane nanofibers. A series of CNT/PU nanocomposites with different weight ratios (2:10, 3:10, and 6:10wt%) were obtained. Scanning electron microscopy, conductivity analysis, water contact angle measurements, and tensile tests were used to characterize the scaffolds. FESEM showed that CNTs were adhered on PU nanofibers and created an interconnected web‐like structures. The SEM images also revealed that the diameters of nanofibers were decreased by increasing CNTs. The electrical conductivity, tensile strength, Young's modulus, and hydrophilicity of CNT/PU nanocomposites also enhanced after adding CNTs. The scaffolds revealed suitable cytocompatibility for H9c2 cells and human umbilical vein endothelial cells (HUVECs). This study indicated that simultaneous electrospinning and electrospray can be used to fabricate conductive CNT/PUnanofibers, resulting in better cytocompatibility and improved interactions between the scaffold and cardiomyoblasts.

Keywords: microscopy; nanofibers based; development electrically; electrically conductive; conductive hybrid; hybrid nanofibers

Journal Title: Microscopy Research and Technique
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.