LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of dentin and fiber post surface treatments with fumaric acid on the bonding ability of fiber posts

Photo from wikipedia

This study investigated the effects of fumaric acid on push‐out bond strength when applied to dentin surfaces and fiber posts. The root canals of 60 mandibular premolar teeth were instrumented… Click to show full abstract

This study investigated the effects of fumaric acid on push‐out bond strength when applied to dentin surfaces and fiber posts. The root canals of 60 mandibular premolar teeth were instrumented and obturated. After removing two thirds of filling material, teeth were prepared according to six randomized groups (n = 10/group) defined by two fiber post surface treatments (0.7% fumaric acid or 9% hydrofluoric acid) and three dentin conditioning treatments [control (no conditioning); 17% ethylenediamine tetraacetic acid (EDTA); or 0.7% fumaric acid]. After fiber post‐cementation, three 1‐mm thick discs were obtained from each tooth by transverse sectioning, and each disc underwent push‐out bond strength testing. Data were analyzed with a one‐way analyses of variance (anova) and t tests; p < .05 was considered statistically significant. Failure modes were determined by stereomicroscopy, and the surface characteristics of dentin and fiber posts were observed by scanning electron microscopy. Push‐out bond strength was greater for the group in which the post surface treated with hydrofluoric acid and the dentin surface treated with fumaric acid than the nontreated dentin and hydrofluoric acid‐treated post group (p < .05). There were no significant differences between other comparison pairs (p > .05). A combination of fumaric acid dentin conditioning and hydrofluoric acid fiber post treatment strengthened the bonding ability of fiber posts.

Keywords: fumaric acid; surface; fiber; post; fiber posts

Journal Title: Microscopy Research and Technique
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.